2D L-System Gallerie

<< XLinden - HP
#3D Hilbertcurve from "The Algorithmic Beauty of Plants"
#TABOP-1.19.lin

steps=3
gamma=90
axiom=A
A->B-F+CFC+F-D&F^D-F+&&CFC+F+B//
B->A&F^CFB^F^D^^-F-D^|F^B|FC^F^A//
C->|D^|F^B-F+C^F^A&&FA&F^C+F+B^F^D//
D->|CFB-F+B|FA&F^A&&FB-F+B|FC//
#Bushlike structure from "The Algorithmic Beauty of Plants"
#TABOP-1.25.lin

steps=7
gamma=22.5
axiom=A
A->[&FL!A]/////'[&FL!A]///////'[&FL!A]
F->S/////F
S->FL
L->['''^^{-f+f+f-|-f+f+f}]
#Plant from "The Algorithmic Beauty of Plants"
#TABOP-1.26.lin

steps=5
gamma=18
axiom=P
P->I+[P+O]--//[--E]I[++E]-[PO]++PO
I->FS[//&&E][//^^E]FS
S->SFS
E->['{+f-ff-f+|+f-ff-f}]
O->[&&&p'/w////w////w////w////w]
p->FF
w->['^F][{&&&&-f+f|-f+f}]
#From "The Algorithmic Beauty of Plants"
#TABOP-2.6a.lin

define r1=0.9
define r2=0.6
define a0=45
define a2=45
define d=137.5
define wr=0.707

steps=10
axiom=A(1,0.1)
A(l,w)->!(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
B(l,w)->!(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
C(l,w)->!(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)
#From "The Algorithmic Beauty of Plants"
#TABOP-2.6b.lin

define r1=0.9
define r2=0.9
define a0=45
define a2=45
define d=137.5
define wr=0.707

steps=10
axiom=A(1,0.1)
A(l,w)->!(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
B(l,w)->!(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
C(l,w)->!(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)
#From "The Algorithmic Beauty of Plants"
#TABOP-2.6c.lin

define r1=0.9
define r2=0.8
define a0=45
define a2=45
define d=137.5
define wr=0.707

steps=10
axiom=A(1,0.1)
A(l,w)->!(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
B(l,w)->!(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
C(l,w)->!(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)
#From "The Algorithmic Beauty of Plants"
#TABOP-2.6d.lin

define r1=0.9
define r2=0.7
define a0=30
define a2=-30
define d=137.5
define wr=0.707

steps=10
axiom=A(1,0.1)
A(l,w)->!(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
B(l,w)->!(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
C(l,w)->!(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)
#From "The Algorithmic Beauty of Plants"
#TABOP-2.7a.lin

define r1=0.9
define r2=0.7
define a1=5
define a2=65
define wr=0.707

steps=10
axiom=!(0.1)A(1,0.1)
A(l,w)->!(w)F(l)[&(a1)B(l*r1,w*wr)]/(180)[&(a2)B(l*r2,w*wr)]
B(l,w)->!(w)F(l)[+(a1)$B(l*r1,w*wr)][-(a2)$B(l*r2,w*wr)]
#From "The Algorithmic Beauty of Plants"
#TABOP-2.7b.lin

define r1=0.9
define r2=0.8
define a1=10
define a2=60
define wr=0.707

steps=10
axiom=!(0.1)A(1,0.1)
A(l,w)->!(w)F(l)[&(a1)B(l*r1,w*wr)]/(180)[&(a2)B(l*r2,w*wr)]
B(l,w)->!(w)F(l)[+(a1)$B(l*r1,w*wr)][-(a2)$B(l*r2,w*wr)]
#From "The Algorithmic Beauty of Plants"
#TABOP-2.7c.lin

define r1=0.9
define r2=0.8
define a1=20
define a2=50
define wr=0.707

steps=10
axiom=!(0.1)A(1,0.1)
A(l,w)->!(w)F(l)[&(a1)B(l*r1,w*wr)]/(180)[&(a2)B(l*r2,w*wr)]
B(l,w)->!(w)F(l)[+(a1)$B(l*r1,w*wr)][-(a2)$B(l*r2,w*wr)]
#From "The Algorithmic Beauty of Plants"
#TABOP-2.7d.lin

define r1=0.9
define r2=0.8
define a1=35
define a2=35
define wr=0.707

steps=10
axiom=!(0.1)A(1,0.1)
A(l,w)->!(w)F(l)[&(a1)B(l*r1,w*wr)]/(180)[&(a2)B(l*r2,w*wr)]
B(l,w)->!(w)F(l)[+(a1)$B(l*r1,w*wr)][-(a2)$B(l*r2,w*wr)]
#Capsella bursa-pastoris from "The Algorithmic Beauty of Plants"
#TABOP-3.5.lin

steps=40
gamma=20
axiom=!(1)I(9)a(13)
a(t):(t>0)->[&(70)L]/(137.5)I(10)a(t-1)
a(t):(t=0)->[&(70)L]/(137.5)I(10)A
A->[&(18)u(4)FFI(10)I(5)X(5)KKKK]/(137.5)I(8)A
I(t):(t>0)->FI(t-1)
I(t):(t=0)->F
u(t):(t>0)->&(9)u(t-1)
u(t):(t=0)->&(9)
L->[{.-FI(7).+FI(7).+FI(7).}][{.+FI(7).-FI(7).-FI(7).}]
K->[&{.+FI(2),--FI(2),}][&{.-FI(2),++FI(2).}]/(90)
X(t):(t>0)->X(t-1)
<< XLinden - HP